
GIT Started with
Community Software

June 2010Jerry Cooperstein

GIT Started with Community Software

● Distributed Development
● GIT and Revision Control Systems
● GIT Design Features
● GIT Concepts
● Repositories
● Main Operations
● Main Commands
● Using GIT: an Example
● File Management
● Making Commitments

GIT Started with Community Software

● Cloning
● Branches
● Merging
● Rebasing
● Bisection
● Dealing with Patches
● Further Training

Distributed Development

● Many developers, working separately
● No structural authoritative central repository
● Every repository is as authoritative is any other

● Each contains entire project history
● Peer-to-peer in nature
● The influence of the main project maintainer is social
 and political, not technical
● No preferred model for organization

● Can be top down or very flat
● Can be pyramidal or egalitarian

● GIT is a tool, not a rigid method

GIT and Revision Control Systems

● Long history of Revision/Source Control Systems
● RCS/SCCS:

● Repository kept alongside working directory
● Can't submit changes while files are checked out

● CVS/Subversion:
● Central repository
● Multiple users, network capabilities
● Simultaneous commits

● Other open source projects:
● Arch, Monotone, Mercurial, PRCS

● Bitkeeper
● Used in Linux kernel until licensing problems developed

● Many commercial products

GIT Design Features

● Based on distributed development
● Scales to large numbers of users
● High speed and maximum efficiency
● Builds in strong trust and integrity
● All changes are documented and accountable
● Immutable data kept in the repository, such as history
● Transactions done atomically
● Branching and merging with parallel lines of

development
● Repository independence
● Free, unencumbered license (GPL V2)

GIT Concepts

● A File is not an essential concept
● Two important data structures maintained:

● Object Store: set of discrete binary objects containing the
project guts

● Index: binary file that contains overall project structure,
changing with time

● Types of objects in the object store:
● Blobs: Binary Large OBject
● Trees: blob identifiers, pathnames, file metadata
● Commits: metadata describing changes
● Tags: human friendly names to describe stages

● Index file maintains changes until they are committed

Repositories

● Configuration information such as names, email of
 authors, which is not carried forth by clone operation
● All repositories are equal
● The repository is a database containing information to:

● Manage revisions
● Display history
● Store a project

● Contains a copy of the repository itself

Main Operations

● Creating or Cloning
● Checkout
● Adding
● Committing
● Tagging
● Diffing
● Showing history
● Pulling and Pushing
● Patching
● Bisection
● Branching
● Merging
● Rebasing

Main Commands

usage: git [--version] [--exec-path[=GIT_EXEC_PATH]] [-p|--paginate|--no-pager] [--
bare] [--git-dir=GIT_DIR] [--work-tree=GIT_WORK_TREE] [--help] COMMAND [ARGS]

The most commonly used git commands are:
 add Add file contents to the index
 bisect Find the change that introduced a bug by binary search
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head
 reset Reset current HEAD to the specified state
 rm Remove files from the working tree and from the index
 show Show various types of objects
 status Show the working tree status
 tag Create, list, delete or verify a tag object signed with GPG

An Example: I

● Creating a local project
$ mkdir git-test
$ cd git-test
$ git init

$ ls -l .git
total 40
drwxrwxr-x 7 coop coop 4096 Dec 30 13:59 ./
drwxrwxr-x 3 coop coop 4096 Dec 30 13:59 ../
drwxrwxr-x 2 coop coop 4096 Dec 30 13:59 branches/
-rw-rw-r-- 1 coop coop 92 Dec 30 13:59 config
-rw-rw-r-- 1 coop coop 58 Dec 30 13:59 description
-rw-rw-r-- 1 coop coop 23 Dec 30 13:59 HEAD
drwxrwxr-x 2 coop coop 4096 Dec 30 13:59 hooks/
drwxrwxr-x 2 coop coop 4096 Dec 30 13:59 info/
drwxrwxr-x 4 coop coop 4096 Dec 30 13:59 objects/
drwxrwxr-x 4 coop coop 4096 Dec 30 13:59 refs/

An Example: II

● Adding a file to the project

$ echo some junk > somejunkfile
$ git add somejunkfile

$ git status
On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: somejunkfile
#
● Make a modification

$ echo another line >> somejunkfile
$ git diff
diff --git a/somejunkfile b/somejunkfile
index 9638122..6023331 100644
--- a/somejunkfile
+++ b/somejunkfile
@@ -1 +1,2 @@
 some junk
+another line

An Example: III

● Commit the changes
$ git commit -m "My initial commit" --author="A Genius <a_genius@linux.com>"
Created initial commit eafad66: My initial commit
 1 files changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 somejunkfile

● Storing author information

$ git config user.name "Another Genius"
$ git config user.email "b_genius@linux.com"

● Showing history
$ git log
commit eafad66304ebbcd6acfe69843d246de3d8f6b9cc
Author: A Genius <a_genius@linux.com>
Date: Wed Dec 30 11:07:19 2009 -0600

 My initial commit

mailto:b_genius@linux.com

 File Management

● File Categories:
● Tracked: in repository
● Ignored: mentioned in .gitignore file
● Untracked: not added yet, temporary, etc

● Basic File Commands

$ git add myfile
$ git rm myfile (removes from repository, not directory)
$ git rm myfile –cached (removes a file not yet committed)
$ git mv oldfile newfile (renames the actual file as well)
$ git ls-files

 Making Commitments I

● You can commit changes as often as you want
● Examples:
 $ git commit file1 file2 file3

 $ git commit ./

 $ git commit -a

 $ git commit -m ”This is a commitment I am making”

● To see uncommitted changes:
 $ git diff

● Commits are fast; unchanged objects are reused

 Making Commitments II

● Viewing the Commit history:
 $ git log

 commit 4b4bf2c5aa95b6746f56f9dfce0e4ec6bddad407

 Author: A Smart Guy <asmartguy@linux.com>

 Date: Thu Dec 31 13:50:15 2009 -0600

 This is the fourth commit

 commit 55eceacc9ab2b4fc1c806b26e79eca4429d8b52a

 Author: A Smart Guy <asmartguy@linux.com>

 Date: Thu Dec 31 13:50:15 2009 -0600

 This is the third commit

 commit f60c0c21764676beca75b7edc2f5f5e51b5dd404

 Author: A Smart Guy <asmartguy@linux.com>

 Date: Thu Dec 31 13:50:15 2009 -0600

 $ git log --pretty=oneline

 4b4bf2c5aa95b6746f56f9dfce0e4ec6bddad407 This is the fourth commit

 55eceacc9ab2b4fc1c806b26e79eca4429d8b52a This is the third commit

 f60c0c21764676beca75b7edc2f5f5e51b5dd404 This is the second commit

 712cbafa7ee0aaef03861b049ddc7865220b4e2c This is the first commit

● Identifiers and Tags:
 $ git commit file1 file2 file3

 $ git commit ./

 $ git commit -a

 $ git commit -m ”This is a commitment I am making”

● To see uncommitted changes:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git commit file1 file2 file3

 $ git commit ./

 $ git commit -a

 $ git commit -m ”This is a commitment I am making”

● To see uncommitted changes:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git tag ver_10 08d869aa8683703c4a60fdc574dd0809f9b073cd

●

● git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git tag ver_10 08d869aa8683703c4a60fdc574dd0809f9b073cd

●

● git diff

● Commits are fast; unchanged objects are reused

 Making Commitments III

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag and checking it out:
$ git tag ver_10 08d869aa8683703c4a60fdc574dd0809f9b073cd

$ git tag ver_10 08d869

$ git checkout ver_10

● Identifiers and Tags:
 $ git commit file1 file2 file3

 $ git commit ./

 $ git commit -a

 $ git commit -m ”This is a commitment I am making”

● To see uncommitted changes:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git commit file1 file2 file3

 $ git commit ./

 $ git commit -a

 $ git commit -m ”This is a commitment I am making”

● To see uncommitted changes:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git tag ver_10 08d869aa8683703c4a60fdc574dd0809f9b073cd

●

● git diff

● Commits are fast; unchanged objects are reused

● Identifiers and Tags:
 $ git log | grep commit | head -5

 commit 08d869aa8683703c4a60fdc574dd0809f9b073cd

 commit 1201b2a9bec0413188ada1443ece1a52da6dbff4

 commit d7f0eea9e431e1b8b0742a74db1a9490730b2a25

 commit 05a625486efc3209ae4d98e253dafa6ce0124385

 commit 1f11abc966b82b9fd0c834707486ef301b2f398d

● Setting a tag:
 $ git tag ver_10 08d869aa8683703c4a60fdc574dd0809f9b073cd

●

● git diff

● Commits are fast; unchanged objects are reused

 Cloning

● To obtain a copy of a remote repository:

 $ git clone git://git.kernel.org/pub/scm/git/git.git

● Returns entire project including .git directory with all
objects, indexes etc.

● Protocol choices:
git://path/to/repo.git (Fastest)

file:///path/to/repo.git

ssh://user@remotesite.org[:port]/path/to/repo.git

user@remotesite.org:/path/to/repo.git

http://remotesite.org/path/to/repo.git

https://remotesite.org/path/to/repo.git

rsync://remotesite.org/path/to/repo.git

● Synchronize with changes at remote site:
$ git pull

 Branches I

● Independent branches are useful:
● Major release branch
● Development branch
● Subsystem branch(es)

● Tags are not branches:
● A branch contains many tags
● Two branches with common ancestor share tags

● Branches can be merged and rebased
● List branches with:

$ git branch

● Detailed history with:
$ git show-branch

 Branches II

● Create a branch with:
$ git branch branch_name [starting_point]

$ git branch devel

● Delete a branch with:
$ git branch -d devel

● Checkout a branch with:
$ git checkout master

● Create and checkout a branch with:
$ git checkout -b newbranch [startpoint]

 Merging

● Merging the development branch:
$ git checkout master

$ git merge devel

 Auto-merged file1

 CONFLICT (content): Merge conflict in file1

 Automatic merge failed; fix conflicts and then commit the result.

● Then work out the conflicts

 Rebasing

● Rebasing the development branch:
$ git checkout devel

$ git rebase master devel

● Fix any conflicts and then do:
$ git rebase –continue

● The development branch is now based on the updated
master branch

● Problems can result:
● Commit history is changed
● Subtle problems because changes may not have been

tested fully
● Developers working off your branch have to rebase

 Bisection

Suppose current version is bad, and there are many
revisions since an earlier good version

● Bisection can rapidly find the last good version
● Start with:

$ git bisect start

$ git bisect bad

$ git bisect good V_10

● Now test the code; it bug is still there do:
$ git bisect bad

● Otherwise, if bug is gone, do:
$ git bisect good

● Can automate with:
$ git bisect run ./myscript.sh

 Dealing With Patches: I

● Patches are convenient:
● Can be emailed instead of pushed and pulled
● Large change sets can be broken into bite size pieces

● Producing a patch without GIT:
$ diff -Nur stable_tree modified_tree > path-to/my_patch

● Applying the patch:
$ cd stable_tree ; patch -p1 < path-to/my_patch

● Be careful with format, plain ascii text, no line-
wrapping, etc. when emailing

 Dealing With Patches: II

● Producing a patch with GIT:
$ git format-patch -2

• Produces a patch file for each of last 2 commits:
0001-first-commit.patch

0002-second-commit.patch

$ git format-patch master
• Produces patches for all changes from the master branch

● Signing off on patches with –signoff or -s adds
Signed-off-by: A Smart Guy <asmartguy@linux.com>

● Email patches with
$ git send-email -to linux-kernel@vger.kernel.org 0001-first-commit-patch

mailto:asmartguy@linux.com
mailto:linux-kernel@vger.kernel.org

Further Training

● LF411: Embedded Linux Development
● 5-day class
● Lab-based with real devices

● http://training.linuxfoundation.org

	GIT Started with Community Software
	Git Started I
	Git Started II
	Distributed Development
	Git Design Features I
	Git Design Features II
	Slide 7
	Repositories
	Main Operations
	Main Commands
	An Example I
	An Example 2
	An Example III
	Slide 14
	Cloning
	Slide 16
	Slide 17
	Slide 18
	Branches I
	Branches II
	Slide 21
	Slide 22
	Bisection
	Dealing With Patches I
	Dealing with Patches II
	Further Training
	Slide 27

