
1

Embedded Streaming Media with

GStreamer

and BeagleBoard

Presented by Todd Fischer

todd.fischer (at) ridgerun.com

Agenda

 BeagleBoard-XM multimedia features

 GStreamer concepts

 GStreamer hands on exercises

 DMAI and GStreamer

 Questions

What's New

 Performance

◦ Tuning not as critical

 Streaming media not central to product

 HD – more power for higher resolution

AM3730 Architecture

 Multimedia features:

◦ Cortex A8 with Neon

◦ C64x+ DSP

◦ HD video accelerators

◦ How to utilize the

hardware features ?

AM3730 Architecture

 Cortex A8

◦ Neon

◦ Super-scaler

◦ Ghz clock

AM3730 Architecture

 C64+ DSP

◦ HD video encode /

decode

AM3730 Architecture

 Graphics Accelerator

◦ Dedicated hardware

◦ IVA – image, video

audio accelerator

◦ SGX accelerator

 Supports OpenGLES

GStreamer

 Streaming media framework – audio and video

 Close to 200 plug-ins available

 Higher level than just input / filters / output

 Networking, audio/video mixed streams, auto data

handling

 Various options utilizing hardware accelerators

GStreamer Overview

 Elements

◦ Source, filters,

sinks

 Bins and Pipelines

◦ Containers,

pipeline is the

overall bin

 Pads

◦ Element source /

sink connection

points

Caps

Capabilities

organized by

stream type with a

set of properties

Plugin

Collection of

elements

Hands On Exercise 0

 Double click on

GStreamer Class icon

 In terminal window, type

source ./s

Need the period

Hands On Exercise 0

 Run video pipeline

v1
 Actual command

gst-launch videotestsrc ! ffmpegcolorspace ! xvimagesink

 See script contents

cat v1
 There are lots of scripts

ls

Simple MP3 Player

 Create dynamically using

gst-launch

 Source element reads from a file

 Filter element converts MP3 to PWM

 Sink element passes to ALSA output

See script a0

Simple Audio Player

Source Code

 Create pipeline, source, filter, sink

◦ Set element properties

 Build into pipeline

◦ Connect src and sink pads

 Setup pipeline event handler

◦ End of stream

 Set pipeline state to play

 Run

See source a_gst.c

Keeping Plug-ins Organized

 Each known plug-in is added to registry

 Most aspects of plug-in are tracked in the

registry

 Registry support run-in pipeline creation

and dynamic filter selection

 Use gst-inspect to list plug-ins

Hands On Exercise 1

 Using gst-inspect, list

◦ All plug-ins

◦ All video plug-ins

◦ Element properties for filesrc plug-in

Hands On Exercise 2

 GStreamer demultplexing pipelines

d5 – flash video

◦ First demultiplex into audio and video
gst-launch filesrc location=sprc720.flv ! flvdemux name=demux

◦ Second, process audio
demux.audio ! queue ! mad ! alsasink

◦ Third, process video
demux.video ! queue ! ffdec_vp6f ! omapdmaifbsink

 Idea is the same

◦ source data, filter data, send data to sink

GStreamer Daemon

 Separates audio / video streaming from

controlling application

 Uses D-Bus messages to control pipeline

 Simplifies application development

– No interaction with Gstreamer API

 Simplifies testing

– Test app just sends D-Bus messages

Performance

Data Passing

 Minimize data copies

 Stream held in buffers with data,

timestamp, other info

 When possible, buffer memory allocated

by sink pad

 Use hardware when data copy is

necessary

Performance

Data Transformation

 Cortex A8 compiler optimization

 NEON

◦ Single Instruction Multiple Data

 C64+

◦ Video accelerator

 DMA and other data movers

Performance

Scheduling
 GStreamer elements may not be tuned

for embedded use model

 Decoder may starve output device

◦ Noticeable audio clicks

 Adjust buffering to pace entire pipeline

 Adjust thread priority

Davinci Multimedia

Application Interface

DMAI and GStreamer

 Davinci Multimedia Application Interface

◦ Exposes OMAP/Davinci hardware using high

level of abstraction

 Stream audio / video

 Graphics display

 Hardware optimized frame/data copy

Sitara Codec Engine

 Isolates users for audio/video codecs

from those implementing the codecs

 Codec can run in several places without

the calling application being aware

◦ Cortex A8, NEON, C64, hardware

accelerator

◦ Uses DSPLink and DSPBios conventions to

support DSP based algorithms dynamically

Convenience Video

 The power of the AM3730

◦ Streaming audio / video can be added to most any

product

 Example: stream from DM365 Leopard Board

365
v4l2src ! dmaienc_mpeg4 ! rtpmp4vpay ! udpsink

BeagleBoard XM
udpsrc ! rtpmp4vdepay ! ffdec_mpeg4 ! omapdmaifbsink

DSPLink

ARM9 C64

GStreamer in

3 Layers

Backup Slides

• DSPLink presentation

DSPLink

ARM / DSP Communication

GPP

App

DSP

Task

Shared

Memory
DSPARM

Data

App

Control

DSPLINK Control

See diagrams in

DSPLINK

Programmers

Guide

DSPLink

Communication Modules
• Notify

– Low frequency

communication

– Small messages

MSGQ

single reader

multiple writers

Variable size

messages

Fixed buffer size

MPLIST

multiple readers

multiple writers

priority order

processing

DSPLink

Communication Modules

• CHNL

– Single reader

– Single writer

– Fixed size buffers

– Legacy SIO

– Simplified buffer

handling

RingIO

Single reader

Single writer

Low

reader/writer

coupling

variable data

creation/

consumption

Independent

execution

DSPLINK

Support Modules
• PROC

– hardware setup

– DSP code load and

boot

– ARM/DSP

communication

– DSP shutdown

POOL

Manage shared

memory

Allocate / free

Address

translation

Cache alignment

