
1

Embedded Streaming Media with

GStreamer

and BeagleBoard

Presented by Todd Fischer

todd.fischer (at) ridgerun.com

Agenda

 BeagleBoard-XM multimedia features

 GStreamer concepts

 GStreamer hands on exercises

 DMAI and GStreamer

 Questions

What's New

 Performance

◦ Tuning not as critical

 Streaming media not central to product

 HD – more power for higher resolution

AM3730 Architecture

 Multimedia features:

◦ Cortex A8 with Neon

◦ C64x+ DSP

◦ HD video accelerators

◦ How to utilize the

hardware features ?

AM3730 Architecture

 Cortex A8

◦ Neon

◦ Super-scaler

◦ Ghz clock

AM3730 Architecture

 C64+ DSP

◦ HD video encode /

decode

AM3730 Architecture

 Graphics Accelerator

◦ Dedicated hardware

◦ IVA – image, video

audio accelerator

◦ SGX accelerator

 Supports OpenGLES

GStreamer

 Streaming media framework – audio and video

 Close to 200 plug-ins available

 Higher level than just input / filters / output

 Networking, audio/video mixed streams, auto data

handling

 Various options utilizing hardware accelerators

GStreamer Overview

 Elements

◦ Source, filters,

sinks

 Bins and Pipelines

◦ Containers,

pipeline is the

overall bin

 Pads

◦ Element source /

sink connection

points

Caps

Capabilities

organized by

stream type with a

set of properties

Plugin

Collection of

elements

Hands On Exercise 0

 Double click on

GStreamer Class icon

 In terminal window, type

source ./s

Need the period

Hands On Exercise 0

 Run video pipeline

v1
 Actual command

gst-launch videotestsrc ! ffmpegcolorspace ! xvimagesink

 See script contents

cat v1
 There are lots of scripts

ls

Simple MP3 Player

 Create dynamically using

gst-launch

 Source element reads from a file

 Filter element converts MP3 to PWM

 Sink element passes to ALSA output

See script a0

Simple Audio Player

Source Code

 Create pipeline, source, filter, sink

◦ Set element properties

 Build into pipeline

◦ Connect src and sink pads

 Setup pipeline event handler

◦ End of stream

 Set pipeline state to play

 Run

See source a_gst.c

Keeping Plug-ins Organized

 Each known plug-in is added to registry

 Most aspects of plug-in are tracked in the

registry

 Registry support run-in pipeline creation

and dynamic filter selection

 Use gst-inspect to list plug-ins

Hands On Exercise 1

 Using gst-inspect, list

◦ All plug-ins

◦ All video plug-ins

◦ Element properties for filesrc plug-in

Hands On Exercise 2

 GStreamer demultplexing pipelines

d5 – flash video

◦ First demultiplex into audio and video
gst-launch filesrc location=sprc720.flv ! flvdemux name=demux

◦ Second, process audio
demux.audio ! queue ! mad ! alsasink

◦ Third, process video
demux.video ! queue ! ffdec_vp6f ! omapdmaifbsink

 Idea is the same

◦ source data, filter data, send data to sink

GStreamer Daemon

 Separates audio / video streaming from

controlling application

 Uses D-Bus messages to control pipeline

 Simplifies application development

– No interaction with Gstreamer API

 Simplifies testing

– Test app just sends D-Bus messages

Performance

Data Passing

 Minimize data copies

 Stream held in buffers with data,

timestamp, other info

 When possible, buffer memory allocated

by sink pad

 Use hardware when data copy is

necessary

Performance

Data Transformation

 Cortex A8 compiler optimization

 NEON

◦ Single Instruction Multiple Data

 C64+

◦ Video accelerator

 DMA and other data movers

Performance

Scheduling
 GStreamer elements may not be tuned

for embedded use model

 Decoder may starve output device

◦ Noticeable audio clicks

 Adjust buffering to pace entire pipeline

 Adjust thread priority

Davinci Multimedia

Application Interface

DMAI and GStreamer

 Davinci Multimedia Application Interface

◦ Exposes OMAP/Davinci hardware using high

level of abstraction

 Stream audio / video

 Graphics display

 Hardware optimized frame/data copy

Sitara Codec Engine

 Isolates users for audio/video codecs

from those implementing the codecs

 Codec can run in several places without

the calling application being aware

◦ Cortex A8, NEON, C64, hardware

accelerator

◦ Uses DSPLink and DSPBios conventions to

support DSP based algorithms dynamically

Convenience Video

 The power of the AM3730

◦ Streaming audio / video can be added to most any

product

 Example: stream from DM365 Leopard Board

365
v4l2src ! dmaienc_mpeg4 ! rtpmp4vpay ! udpsink

BeagleBoard XM
udpsrc ! rtpmp4vdepay ! ffdec_mpeg4 ! omapdmaifbsink

DSPLink

ARM9 C64

GStreamer in

3 Layers

Backup Slides

• DSPLink presentation

DSPLink

ARM / DSP Communication

GPP

App

DSP

Task

Shared

Memory
DSPARM

Data

App

Control

DSPLINK Control

See diagrams in

DSPLINK

Programmers

Guide

DSPLink

Communication Modules
• Notify

– Low frequency

communication

– Small messages

MSGQ

single reader

multiple writers

Variable size

messages

Fixed buffer size

MPLIST

multiple readers

multiple writers

priority order

processing

DSPLink

Communication Modules

• CHNL

– Single reader

– Single writer

– Fixed size buffers

– Legacy SIO

– Simplified buffer

handling

RingIO

Single reader

Single writer

Low

reader/writer

coupling

variable data

creation/

consumption

Independent

execution

DSPLINK

Support Modules
• PROC

– hardware setup

– DSP code load and

boot

– ARM/DSP

communication

– DSP shutdown

POOL

Manage shared

memory

Allocate / free

Address

translation

Cache alignment

